本發明涉(she)及(ji)一種(zhong)微電(dian)網(wang)技術,特別涉(she)及(ji)一種(zhong)三相四線(xian)制npc型三電(dian)平sapf基于lyapunov函數(shu)的非線(xian)性控制方法(fa)。
背景技術:
近(jin)年來,隨著整(zheng)流、變頻(pin)裝(zhuang)置(zhi)的(de)廣泛使(shi)用和半導體非線性負荷的(de)快速增加,使(shi)得電力系(xi)統面(mian)臨(lin)著越來越嚴重的(de)諧波污(wu)染問題。采(cai)用并聯(lian)型有源濾波器(shuntactivepowerfilter,sapf)對(dui)電網的(de)諧波進行動態實時補償(chang),已(yi)成為最有效、最具前(qian)景的(de)途徑之一。
三電(dian)(dian)平sapf相(xiang)比于傳統的兩(liang)電(dian)(dian)平sapf有(you)許多(duo)優點,例(li)如具有(you)較低的開(kai)關頻率和(he)損(sun)耗、高(gao)系(xi)統耐壓、在(zai)較高(gao)電(dian)(dian)壓系(xi)統中(zhong)(zhong)獲得(de)了應用(yong)等。三電(dian)(dian)平sapf的拓撲(pu)結構主要有(you)二(er)極(ji)管(guan)鉗(qian)位(neutral-pointclamped,npc)型、飛跨電(dian)(dian)容型和(he)級聯h橋(qiao)型,其中(zhong)(zhong)npc型所(suo)(suo)需的直(zhi)流側電(dian)(dian)容數量(liang)和(he)所(suo)(suo)需解(jie)決的直(zhi)流側電(dian)(dian)壓不平衡(heng)問題最少、魯棒性(xing)最好。目前,國內(nei)外(wai)的研(yan)究大(da)多(duo)是基于三相(xiang)三線(xian)(xian)制以(yi)及單(dan)相(xiang)半橋(qiao)系(xi)統,而對(dui)(dui)于三相(xiang)四線(xian)(xian)制系(xi)統的研(yan)究則(ze)較為(wei)有(you)限。但三相(xiang)四線(xian)(xian)制系(xi)統增加了對(dui)(dui)零(ling)序(xu)分量(liang)的處理,不僅能(neng)對(dui)(dui)三相(xiang)平衡(heng)系(xi)統的諧波和(he)無功(gong)進行補償,而且能(neng)對(dui)(dui)電(dian)(dian)網不平衡(heng)時(shi)非(fei)線(xian)(xian)性(xing)負荷產生的零(ling)序(xu)諧波分量(liang)進行補償,因此本發明選(xuan)擇(ze)三相(xiang)四線(xian)(xian)制npc型三電(dian)(dian)平sapf作(zuo)為(wei)研(yan)究對(dui)(dui)象(xiang)。
npc型三電平拓撲結構雖具(ju)有許多突出的(de)優點(dian)(dian),但中(zhong)點(dian)(dian)電壓(ya)(ya)不平衡也是其(qi)固有的(de)缺陷(xian)。中(zhong)點(dian)(dian)電壓(ya)(ya)波動會降低系統的(de)穩定性,嚴重時甚至會使(shi)系統無法(fa)正(zheng)(zheng)常工作(zuo),因此必(bi)須(xu)對(dui)(dui)其(qi)進行(xing)控(kong)制。通過調(diao)節svpwm調(diao)制算法(fa)中(zhong)的(de)正(zheng)(zheng)負小(xiao)矢(shi)量(liang)的(de)作(zuo)用時間即可實(shi)現中(zhong)點(dian)(dian)電壓(ya)(ya)平衡控(kong)制。由于(yu)一對(dui)(dui)冗余小(xiao)矢(shi)量(liang)對(dui)(dui)直流側中(zhong)點(dian)(dian)電位的(de)影響是互補的(de),因此,本文采用基(ji)于(yu)電荷(he)平衡原(yuan)理的(de)控(kong)制方法(fa),通過引入平衡因子f調(diao)節一對(dui)(dui)冗余小(xiao)矢(shi)量(liang)的(de)作(zuo)用時間來實(shi)現對(dui)(dui)中(zhong)點(dian)(dian)電位的(de)實(shi)時控(kong)制。
穩定有(you)效(xiao)的(de)(de)(de)控(kong)(kong)制(zhi)(zhi)(zhi)器設計(ji)是(shi)sapf理論(lun)研究(jiu)的(de)(de)(de)關鍵所在。傳統(tong)的(de)(de)(de)控(kong)(kong)制(zhi)(zhi)(zhi)策略主要依據局部線(xian)性(xing)化方(fang)法(fa)(fa),當系(xi)統(tong)參數或(huo)負(fu)載(zai)發(fa)(fa)生變化時,控(kong)(kong)制(zhi)(zhi)(zhi)性(xing)能不(bu)(bu)穩定,且由于(yu)(yu)sapf的(de)(de)(de)動態方(fang)程是(shi)非線(xian)性(xing)的(de)(de)(de),因(yin)此對sapf的(de)(de)(de)控(kong)(kong)制(zhi)(zhi)(zhi)效(xiao)果不(bu)(bu)佳。近20年來(lai)迅速(su)發(fa)(fa)展的(de)(de)(de)非線(xian)性(xing)控(kong)(kong)制(zhi)(zhi)(zhi)系(xi)統(tong)的(de)(de)(de)微分幾(ji)何理論(lun)為(wei)這一(yi)問題(ti)提(ti)(ti)供(gong)了可行(xing)性(xing)的(de)(de)(de)解(jie)決方(fang)案。例如,有(you)文(wen)獻提(ti)(ti)出(chu)利用狀態反饋(kui)精確線(xian)性(xing)化方(fang)法(fa)(fa)建立其線(xian)性(xing)化模型,可實現對sapf三相(xiang)進(jin)行(xing)解(jie)耦控(kong)(kong)制(zhi)(zhi)(zhi),但該方(fang)法(fa)(fa)需建立精確的(de)(de)(de)系(xi)統(tong)模型;有(you)文(wen)獻提(ti)(ti)出(chu)滑模控(kong)(kong)制(zhi)(zhi)(zhi)方(fang)法(fa)(fa),該控(kong)(kong)制(zhi)(zhi)(zhi)策略雖能取得較好(hao)的(de)(de)(de)補(bu)償(chang)效(xiao)果,但其存在高頻(pin)抖動的(de)(de)(de)問題(ti);有(you)文(wen)獻提(ti)(ti)出(chu)基(ji)于(yu)(yu)無源理論(lun)的(de)(de)(de)自適(shi)應滑模控(kong)(kong)制(zhi)(zhi)(zhi),能實現諧波電流(liu)和直流(liu)側(ce)電壓的(de)(de)(de)快速(su)跟蹤控(kong)(kong)制(zhi)(zhi)(zhi),但只能實現平衡負(fu)荷下(xia)的(de)(de)(de)控(kong)(kong)制(zhi)(zhi)(zhi)。有(you)文(wen)獻將基(ji)于(yu)(yu)李(li)雅普諾夫(lyapunov)函(han)數的(de)(de)(de)非線(xian)性(xing)控(kong)(kong)制(zhi)(zhi)(zhi)方(fang)法(fa)(fa)引(yin)入(ru)到sapf中,可實現負(fu)載(zai)變化時的(de)(de)(de)實時控(kong)(kong)制(zhi)(zhi)(zhi),但控(kong)(kong)制(zhi)(zhi)(zhi)對象為(wei)小功(gong)率(lv)的(de)(de)(de)單相(xiang)sapf。本發(fa)(fa)明針對該缺陷,將基(ji)于(yu)(yu)李(li)雅普諾夫函(han)數的(de)(de)(de)非線(xian)性(xing)控(kong)(kong)制(zhi)(zhi)(zhi)方(fang)法(fa)(fa)引(yin)入(ru)到中、高功(gong)率(lv)的(de)(de)(de)三相(xiang)四線(xian)制(zhi)(zhi)(zhi)sapf中。
技術實現要素:
本(ben)發明是針對上(shang)述(shu)現有技(ji)術存(cun)在的(de)(de)缺(que)陷的(de)(de)問(wen)題,提出(chu)了一(yi)種三相(xiang)四線制(zhi)npc型三電平sapf的(de)(de)非線性控(kong)制(zhi)方(fang)法,能實現對電網(wang)平衡(heng)/不平衡(heng)下三相(xiang)四線制(zhi)sapf的(de)(de)控(kong)制(zhi),減小諧波電流且(qie)維(wei)持直流側電壓的(de)(de)平衡(heng)與穩定,解(jie)決了目前常用方(fang)法存(cun)在控(kong)制(zhi)精度(du)不高、諧波較大、算法復雜(za),且(qie)一(yi)些方(fang)法僅能用于平衡(heng)狀態、小功率(lv)、單相(xiang)的(de)(de)sapf上(shang)的(de)(de)問(wen)題。
本發明的(de)技術方(fang)案為:一種三(san)(san)相四線制(zhi)npc型(xing)三(san)(san)電(dian)(dian)平(ping)(ping)sapf的(de)非(fei)線性控(kong)(kong)(kong)制(zhi)方(fang)法,三(san)(san)相四線制(zhi)npc型(xing)三(san)(san)電(dian)(dian)平(ping)(ping)并(bing)聯型(xing)有源濾(lv)波器(qi)sapf并(bing)聯在(zai)逆變器(qi)與電(dian)(dian)網之(zhi)間,基于李雅普(pu)諾夫(fu)lyapunov函數的(de)非(fei)線性控(kong)(kong)(kong)制(zhi)內環(huan),通過比(bi)例積分pi的(de)外環(huan)電(dian)(dian)壓控(kong)(kong)(kong)制(zhi),引入調節因子f,調節svpwm調制(zhi)算法中(zhong)的(de)正負(fu)小矢量的(de)作用時間;具體(ti)包括如下步驟:
步驟s1:運用基爾霍夫定律和(he)狀態空間平均(jun)法,選(xuan)取sapf輸出(chu)三(san)相(xiang)補償電(dian)(dian)流ifi和(he)直流側電(dian)(dian)容cf1兩端(duan)的(de)電(dian)(dian)壓(ya)vdc1、直流側電(dian)(dian)容cf2兩端(duan)的(de)電(dian)(dian)壓(ya)vdc2為狀態變(bian)量,下標i=a,b,c,可得三(san)相(xiang)四線制npc型三(san)電(dian)(dian)平sapf在三(san)相(xiang)靜(jing)止abc坐標系下的(de)數學(xue)模型為:
式(shi)中:vli為(wei)網側(ce)(ce)公共(gong)連接點(pcc)處(chu)的(de)電(dian)壓(ya);lf是(shi)(shi)sapf輸出(chu)側(ce)(ce)濾(lv)波(bo)電(dian)感;rf是(shi)(shi)sapf輸出(chu)側(ce)(ce)串聯電(dian)阻(zu);cf是(shi)(shi)直流側(ce)(ce)電(dian)容(rong)(rong);vdc1、vdc2分別為(wei)sapf直流側(ce)(ce)電(dian)容(rong)(rong)cf1、cf2兩端(duan)電(dian)壓(ya);ifi為(wei)sapf輸出(chu)三(san)相(xiang)補償電(dian)流;sij為(wei)三(san)相(xiang)四線制三(san)電(dian)平sapf的(de)開關函數,下標i=a,b,c;j=1,2,3,4,其定義如(ru)下:
當si1=si2=1,si3=si4=0時(shi),sapf輸出(chu)側相(xiang)電壓vin=vdc1;當si1=si2=0,si3=si4=1時(shi),vin=-vdc2;當si2/si3=1,si1=si4=0時(shi),vin=0;
步(bu)驟s2:根據坐標變換理論,采用等(deng)功(gong)率變換將(jiang)步(bu)驟s1所獲得的(de)sapf在三(san)相靜止(zhi)abc坐標系(xi)下(xia)的(de)數學模型轉換至同(tong)步(bu)旋轉dq0坐標系(xi)中,即:
式中:skm、ifk、、vlk分(fen)別(bie)表(biao)示dq0坐標系下開(kai)關函數、sapf補償電(dian)流、pcc處的(de)電(dian)壓在d、q、0軸的(de)分(fen)量,下標k=d,q,0;m=1,4;ω=2πf為(wei)電(dian)源角頻(pin)率,f=50hz為(wei)電(dian)網頻(pin)率;
步(bu)驟s3:根據步(bu)驟s2所獲得的(de)sapf在同步(bu)旋轉dq0坐(zuo)標(biao)系下的(de)一(yi)般數(shu)學(xue)模型,獲得sapf在穩態時(shi)的(de)數(shu)學(xue)模型,進一(yi)步(bu)獲得穩態時(shi)開(kai)關函數(shu)的(de)表(biao)達(da)式;
選取npc型三電平sapf系統狀態變量x=[x1,x2,x3,x4,x5]t=[ifd,ifq,if0,vdc1,vdc2]t,輸入變量u=[u1,u2,u3,u4,u5,u6]t=[sd1,sd4,sq1sq4,s01,s04]t,系統狀態變量期望值
當系統工作在穩態時,sapf輸出電流和直流側電壓均為對應的參考值,即穩態時x=x*,則(ze)結合步驟(zou)s2所(suo)獲得的(de)sapf在同步旋轉dq0坐標(biao)系下(xia)的(de)數學模(mo)型可得穩(wen)態時npc型三電(dian)平sapf的(de)數學模(mo)型為:
式中:
采用spwm載波層疊(die)調制,為(wei)保(bao)持(chi)開關函(han)數(shu)的對稱性,穩態開關函(han)數(shu)選擇(ze)為(wei):
結合穩態(tai)時(shi)npc型三電平sapf的數學模型可得穩態(tai)時(shi)dq0坐標系下開關函數的關系式(shi)為:
步(bu)(bu)驟(zou)s4:根(gen)據步(bu)(bu)驟(zou)s2和(he)步(bu)(bu)驟(zou)s3所獲得的(de)npc型三電平sapf在dq0坐標系下的(de)數(shu)學(xue)(xue)模(mo)(mo)型和(he)穩態時的(de)數(shu)學(xue)(xue)模(mo)(mo)型,設計電流內環的(de)基(ji)于lyapunov函數(shu)的(de)非線性控制器;
令誤差e=x-x*,結合步(bu)驟s2和步(bu)驟s3所獲得的npc型三(san)電平(ping)sapf在dq0坐標(biao)系下的數(shu)學模(mo)型和穩態時的數(shu)學模(mo)型,以系統全局漸進穩定為目標(biao),結合lyapunov理(li)論,設計開關函數(shu)為:
式中:α1、α2、α3<0分別為系(xi)統d、q、0軸上lyapunov函數的控制增益(yi);
步(bu)驟s5:為了進一步(bu)提高系統(tong)的(de)(de)(de)魯棒性,找到最(zui)優(you)控(kong)制增益從而保(bao)證線(xian)路參數變化時也(ye)能確保(bao)諧(xie)波電流的(de)(de)(de)準(zhun)確跟蹤和系統(tong)的(de)(de)(de)穩定運行;
sapf實際運行時,線路參數會發生變化,若t時刻系統的期望值
其中,η1、η2、η3為(wei)常(chang)數,同時由(you)于(yu)外環電(dian)壓響應速度(du)遠遠大于(yu)內環,因此(ci)可假(jia)設vdc1=vdc2,即(ji)e5=e4,z5=z4,則不精確控制(zhi)下的npc型三電(dian)平sapf系(xi)統的正(zheng)定(ding)能量函數對時間(jian)的導數變為(wei):
令μ1=-2α1x'4
式中:λ1為(wei)(wei)β1的二次函數(shu),當(dang)β1=(1+η1)/(2η1)時(shi),λ1取得最小(xiao)值(zhi),即為(wei)(wei):
只有當λ1min>0成立(li)時,npc型三電平sapf系(xi)統(tong)的(de)正定能量函數對時間的(de)導數負定,為確保(bao)系(xi)統(tong)的(de)漸進(jin)穩定性,設ηa<η1<ηb,ηa、ηb滿(man)足:
為確保線路參數(shu)變化時系(xi)統依(yi)然穩(wen)定,α1應盡可能小(xiao),μ1盡可能趨于0;
對于(yu)期(qi)望參數的不確定區(qu)間η1∈[1-ε1,1+ε1],由上式可求得|α1|取值區(qu)間為:
其中,ε1為一(yi)任(ren)意正整數,同理可求得|α2|、|α3|的取(qu)值區(qu)間;
步(bu)驟(zou)s6:根據(ju)步(bu)驟(zou)s4中所得的(de)開(kai)關函數作為svpwm的(de)輸入(ru),控制sapf各相(xiang)橋(qiao)臂(bei)上的(de)開(kai)關的(de)開(kai)通和關斷;
步(bu)驟s7:根據電(dian)荷平衡(heng)原理,引入(ru)調節因子f,調節svpwm調制算法(fa)中的(de)正負小矢量(liang)的(de)作用時間,維持直流側電(dian)壓的(de)平衡(heng),其中,
ts為采樣周期。
本發(fa)明(ming)的有(you)益效果在(zai)于:本發(fa)明(ming)三相四線(xian)制npc型三電(dian)(dian)平(ping)sapf的非線(xian)性(xing)控(kong)(kong)制方法,通(tong)過(guo)基于lyapunov函數的非線(xian)性(xing)控(kong)(kong)制內(nei)環,使(shi)被控(kong)(kong)量補償電(dian)(dian)流完全解耦(ou),能夠改善系(xi)統的動靜(jing)態特性(xing);通(tong)過(guo)比(bi)例(li)積分pi的外環電(dian)(dian)壓(ya)控(kong)(kong)制,能有(you)效的使(shi)直流側總電(dian)(dian)壓(ya)維持(chi)在(zai)設定值;通(tong)過(guo)引入與δv(δv=vdc1-vdc2)有(you)關的調(diao)節因子f使(shi)直流側電(dian)(dian)壓(ya)保持(chi)平(ping)衡。與現(xian)有(you)技(ji)術相比(bi),本發(fa)明(ming)具有(you)理論先進、動靜(jing)態性(xing)能良好(hao)等優點。
附圖說明
圖(tu)1是三(san)相四線制npc型三(san)電平sapf的(de)電路結(jie)構圖(tu);
圖2是能使系統穩定的η1的取(qu)值(zhi)范圍圖;
圖3是三相四線制npc型三電平(ping)sapf的控制框圖;
圖4a為三相電網電壓平衡(heng)時(shi),補償前三相非線性負載(zai)電流(liu)仿真結果圖;
圖(tu)4b為三相電(dian)(dian)網電(dian)(dian)壓平衡時,sapf補償(chang)后三相電(dian)(dian)源電(dian)(dian)流仿真結(jie)果圖(tu);
圖4c為三(san)相電(dian)(dian)網電(dian)(dian)壓(ya)平(ping)衡時,補償后直流(liu)側的總(zong)電(dian)(dian)壓(ya)和上、下(xia)電(dian)(dian)容兩端電(dian)(dian)壓(ya)仿真結(jie)果圖;
圖5a為三相電(dian)(dian)網電(dian)(dian)壓(ya)幅值不平(ping)衡時sapf補償前,三相電(dian)(dian)源電(dian)(dian)壓(ya);
圖(tu)5b為三(san)相電網電壓幅(fu)值(zhi)不(bu)平衡(heng)時sapf補償(chang)前,三(san)相非線性負載(zai)電流仿真圖(tu);
圖(tu)5c為三相電網電壓幅值(zhi)不(bu)平衡時sapf補償(chang)前,a相電源電流(liu)的(de)thd值(zhi)仿真圖(tu);
圖6a為三(san)相(xiang)電壓幅值不平(ping)衡(heng)時,本發明方法下sapf補償后三(san)相(xiang)電源電流波形仿真(zhen)結果圖;
圖6b為三相電壓幅值不(bu)平(ping)衡時,本發(fa)明方法下sapf補償(chang)后(hou)直流(liu)側(ce)的總電壓波(bo)形仿真(zhen)結果圖;
圖(tu)6c為三相電(dian)(dian)壓(ya)幅值不平衡(heng)時,本發明方法下(xia)sapf補償后,直流側上(shang)、下(xia)電(dian)(dian)容兩端電(dian)(dian)壓(ya)波形(xing)仿(fang)真結果圖(tu);
圖6d為三相電壓幅值不平衡時,本發明方法下sapf補償后,sapf側相電壓波形仿真結果圖;
圖6e為三相(xiang)電壓(ya)幅值不平(ping)衡(heng)時,本發(fa)明(ming)方法下sapf補償后a相(xiang)電源電流(liu)的thd值;
圖7a為三(san)相電壓幅值不平(ping)衡時,傳統pi控制方法(fa)下sapf補償后三(san)相電源(yuan)電流波形仿(fang)真(zhen)結果圖;
圖7b為三相電壓幅值不平衡時,傳統pi控制(zhi)方(fang)法下sapf補償后直流側的總電壓波形仿(fang)真結果(guo)圖;
圖7c為三相電(dian)壓(ya)幅值(zhi)不平衡時,傳(chuan)統(tong)pi控制方法下sapf補(bu)償后(hou)直流側差壓(ya)的對(dui)比波形(xing)仿真結(jie)果圖;
圖7d為(wei)三相(xiang)電壓幅值不平衡時(shi),傳統(tong)pi控制方法下sapf補償后a相(xiang)電源電流的thd值;
圖8a為三相(xiang)電壓(ya)相(xiang)角不(bu)平衡時,三相(xiang)電源電壓(ya)仿真(zhen)結果圖;
圖8b為三相(xiang)電(dian)壓(ya)相(xiang)角不平衡(heng)時,三相(xiang)非線性負載電(dian)流(liu)仿真結果(guo)圖;
圖8c為(wei)三相(xiang)電壓相(xiang)角不平衡時,三相(xiang)電源電流仿真結果圖;
圖8d為三(san)相(xiang)電壓相(xiang)角不平衡時(shi),sapf側線電壓仿真結(jie)果圖;
圖9是電網平衡時實(shi)驗(yan)結果圖;其中:(a)為(wei)(wei)a相(xiang)電源電流(liu);(b)為(wei)(wei)a相(xiang)負載電流(liu);(c)為(wei)(wei)a相(xiang)補(bu)償電流(liu);(d)為(wei)(wei)上、下直流(liu)側電容電壓;
圖10是三(san)相電(dian)(dian)(dian)壓(ya)(ya)幅(fu)值不平衡時的實(shi)(shi)驗結果圖;其(qi)中:(a)為三(san)相電(dian)(dian)(dian)網電(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)驗波(bo)形圖;(b)為a相負載電(dian)(dian)(dian)流實(shi)(shi)驗波(bo)形圖;(c)為本發明(ming)方(fang)(fang)法下a相電(dian)(dian)(dian)源(yuan)電(dian)(dian)(dian)流實(shi)(shi)驗波(bo)形圖;(d)為傳統pi控(kong)制方(fang)(fang)法下sapf側a相電(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)驗波(bo)形圖;
圖11是三相電(dian)(dian)(dian)壓(ya)(ya)相角不平(ping)衡時的實(shi)(shi)驗(yan)(yan)結果(guo)圖。其(qi)中:(a)為三相電(dian)(dian)(dian)網電(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)驗(yan)(yan)波形(xing)(xing)圖;(b)為a相負載電(dian)(dian)(dian)流(liu)(liu)實(shi)(shi)驗(yan)(yan)波形(xing)(xing)圖;(c)為a相電(dian)(dian)(dian)源(yuan)電(dian)(dian)(dian)流(liu)(liu)實(shi)(shi)驗(yan)(yan)波形(xing)(xing)圖;(d)為sapf側(ce)線電(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)驗(yan)(yan)波形(xing)(xing)圖。
具體實施方式
一種(zhong)三(san)(san)相四線(xian)制npc型三(san)(san)電(dian)平(ping)(ping)sapf基于lyapunov函數(shu)的(de)(de)非線(xian)性(xing)(xing)控制方法(fa)。從sapf的(de)(de)動態方程(cheng)是(shi)非線(xian)性(xing)(xing)的(de)(de)角度出發,通過步驟s4的(de)(de)方法(fa),采用(yong)非線(xian)性(xing)(xing)無源控制器對其(qi)進行(xing)(xing)控制,能使被控量—補償(chang)電(dian)流(liu)完全解耦(ou);不僅(jin)能夠(gou)對三(san)(san)相平(ping)(ping)衡(heng)系統的(de)(de)諧波(bo)和無功進行(xing)(xing)補償(chang),而且能夠(gou)對電(dian)網不平(ping)(ping)衡(heng)時(shi)非線(xian)性(xing)(xing)負荷產生(sheng)的(de)(de)諧波(bo)分量進行(xing)(xing)補償(chang);通過步驟s7的(de)(de)方法(fa),引(yin)入(ru)調節因子f能維持(chi)直(zhi)流(liu)側電(dian)容電(dian)壓(ya)平(ping)(ping)衡(heng)。具體(ti)步驟如下:
步驟(zou)s1:根據(ju)圖1所示的(de)三(san)(san)(san)相四(si)線制npc型(xing)三(san)(san)(san)電(dian)(dian)平(ping)(ping)sapf的(de)電(dian)(dian)路結構圖,三(san)(san)(san)相四(si)線制npc型(xing)三(san)(san)(san)電(dian)(dian)平(ping)(ping)并聯(lian)型(xing)有源濾波器sapf并聯(lian)在逆變器與(yu)電(dian)(dian)網(wang)之間,運用基爾(er)霍夫(fu)定(ding)律(lv)和(he)狀(zhuang)態空間平(ping)(ping)均法,選取sapf輸(shu)出三(san)(san)(san)相補償(chang)電(dian)(dian)流(liu)ifi(下(xia)標i=a,b,c)和(he)直(zhi)流(liu)側電(dian)(dian)容cf1兩端(duan)的(de)電(dian)(dian)壓(ya)vdc1、直(zhi)流(liu)側電(dian)(dian)容cf2兩端(duan)的(de)電(dian)(dian)壓(ya)vdc2為狀(zhuang)態變量,可(ke)得(de)三(san)(san)(san)相四(si)線制npc型(xing)三(san)(san)(san)電(dian)(dian)平(ping)(ping)sapf在三(san)(san)(san)相靜止abc坐(zuo)標系下(xia)的(de)一(yi)般數學(xue)模型(xing)為:
式中:vli為網側公共(gong)連(lian)接點(pcc)處的電(dian)(dian)(dian)(dian)壓;lf是sapf輸(shu)出側濾波電(dian)(dian)(dian)(dian)感;rf是sapf輸(shu)出側串聯電(dian)(dian)(dian)(dian)阻;cf是直流側電(dian)(dian)(dian)(dian)容(rong)(cf1與cf2的等效值);vdc1、vdc2分別為sapf直流側電(dian)(dian)(dian)(dian)容(rong)cf1、cf2兩端(duan)電(dian)(dian)(dian)(dian)壓;ifi為sapf輸(shu)出三相(xiang)補償(chang)電(dian)(dian)(dian)(dian)流;sij(下(xia)標i=a,b,c;j=1,2,3,4)為三相(xiang)四線制三電(dian)(dian)(dian)(dian)平sapf的開(kai)關函數,其定義如下(xia):
由此可見(jian),當(dang)si1=si2=1,si3=si4=0時(shi)(shi)(shi),sapf輸(shu)出側(ce)相電(dian)壓vin=vdc1;當(dang)si1=si2=0,si3=si4=1時(shi)(shi)(shi),vin=-vdc2;當(dang)si2/si3=1,si1=si4=0時(shi)(shi)(shi),vin=0。
步(bu)驟s2:根據(ju)坐標變換(huan)理(li)論,采用等功率(lv)變換(huan)將步(bu)驟s1所獲得的(de)sapf在三(san)相(xiang)靜止abc坐標系(xi)下的(de)一般數學模型(xing)轉(zhuan)換(huan)至(zhi)同步(bu)旋轉(zhuan)dq0坐標系(xi)中,即:
式(shi)中:skm(下標(biao)k=d,q,0;m=1,4)、ifk、、vlk分(fen)別表示dq0坐(zuo)標(biao)系下開關(guan)函數、sapf補償電(dian)(dian)流、pcc處(chu)的(de)電(dian)(dian)壓(ya)在(zai)d、q、0軸的(de)分(fen)量;ω=2πf(f=50hz為電(dian)(dian)網頻率)為電(dian)(dian)源(yuan)角頻率。
步驟s3:根(gen)據(ju)步驟s2所獲得的(de)sapf在同步旋轉(zhuan)dq0坐(zuo)標系下的(de)一(yi)般數學模型(xing),獲得sapf在穩態(tai)時(shi)的(de)數學模型(xing),進一(yi)步獲得穩態(tai)時(shi)開(kai)關函數的(de)表達式(shi);
選取npc型三電平sapf系統狀態變量x=[x1,x2,x3,x4,x5]t=[ifd,ifq,if0,vdc1,vdc2]t,輸入變量u=[u1,u2,u3,u4,u5,u6]t=[sd1,sd4,sq1sq4,s01,s04]t,系統狀態變量期望值
式中:
本發(fa)明(ming)采(cai)用spwm載波層疊調制,為(wei)保持開關函(han)數的(de)對稱性,穩態開關函(han)數選擇為(wei):
結合穩(wen)(wen)態(tai)時npc型三電(dian)平sapf的(de)數(shu)學模型可得穩(wen)(wen)態(tai)時dq0坐標系(xi)下開(kai)關(guan)函數(shu)的(de)關(guan)系(xi)式為:
步驟(zou)s4:根據步驟(zou)s2和步驟(zou)s3所獲得(de)的npc型三電平(ping)sapf在dq0坐標系(xi)下(xia)的一般數學(xue)模(mo)型和穩態時的數學(xue)模(mo)型,設計電流內環的基于lyapunov函數的非線性控制器;
令誤差e=x-x*,結合(he)步驟(zou)s2和步驟(zou)s3所(suo)獲得的(de)(de)npc型三電平sapf在(zai)dq0坐標系(xi)下的(de)(de)一(yi)般數學(xue)(xue)模型和穩態時的(de)(de)數學(xue)(xue)模型可得系(xi)統的(de)(de)誤差動(dong)態特性方程為:
以系統全(quan)局漸進(jin)穩定(ding)為目標,結合lyapunov理(li)論(lun),設計npc型三電平sapf系統的正定(ding)能量(liang)函數為:
該式滿足初始條(tiao)件的要(yao)求,即e=0時,h(e)=0;e≠0時,h(e)>0。
結合(he)系統(tong)的誤(wu)差動態(tai)特(te)性方(fang)程,可得(de)npc型三電(dian)平(ping)sapf系統(tong)的正(zheng)定(ding)能量函數對(dui)時間的導數為:
對于(yu)(yu)npc型三電平sapf系統(tong),要(yao)滿(man)(man)足e≠0時,h(e)>0,需滿(man)(man)足該(gai)(gai)式小于(yu)(yu)0,才可實(shi)現h(e)收斂于(yu)(yu)0時,‖e‖也收斂至0。該(gai)(gai)式中第(di)1項(xiang)顯然為(wei)負,因(yin)此,為(wei)使該(gai)(gai)式恒定為(wei)負,設(she)計開(kai)關函數為(wei):
式中:α1、α2、α3<0分別為(wei)系統d、q、0軸上lyapunov函(han)數的控制增益。
步驟s5:,為(wei)了進一步提高系統的(de)魯棒性(xing),需要找(zhao)到最(zui)優(you)控制(zhi)增益從而保(bao)(bao)證線路參(can)數變化(hua)時也能確保(bao)(bao)諧(xie)波電流(liu)的(de)準確跟蹤和系統的(de)穩定運行;
sapf實際運行時,線路參數會發生變化。若t時刻系統的期望值
其(qi)中,η1、η2、η3為(wei)常數(shu)(shu)。同時由于外(wai)環電(dian)壓響應速度遠遠大于內環,因此可假設vdc1=vdc2,即(ji)e5=e4,z5=z4。則不(bu)精(jing)確控制(zhi)下的(de)npc型三電(dian)平sapf系統的(de)正(zheng)定能(neng)量函數(shu)(shu)對時間的(de)導(dao)數(shu)(shu)變(bian)為(wei):
令μ1=-2α1x'4
式中:λ1為β1的二次函數。當β1=(1+η1)/(2η1)時,λ1取得最小值,即為:
只有當λ1min>0成(cheng)立時,npc型(xing)三電(dian)平sapf系統(tong)的(de)(de)(de)正定(ding)(ding)能量(liang)函數對時間的(de)(de)(de)導數負定(ding)(ding)。λ1min隨η1的(de)(de)(de)變化趨勢(shi)如圖2所(suo)示能使系統(tong)穩(wen)(wen)定(ding)(ding)的(de)(de)(de)η1的(de)(de)(de)取值(zhi)范(fan)圍圖。為(wei)確(que)保系統(tong)的(de)(de)(de)漸進(jin)穩(wen)(wen)定(ding)(ding)性,設ηa<η1<ηb,ηa、ηb滿足:
為確保線路(lu)參數變化時系統依然穩(wen)定,α1應盡可(ke)能小(xiao)(μ1盡可(ke)能趨于(yu)0)。
對于期望參數的(de)不(bu)確定區間(jian)η1∈[1-ε1,1+ε1],由上(shang)式可求得(de)|α1|取值(zhi)區間(jian)為:
其中,ε1為一任意正整數(無論它多么小)。由此可知,若不確定范圍ε1取0.05,且rf=0.4ω、v*=800v時,|α1|的(de)取值(zhi)區間為[0,0.0019]。同理可求得|α2|、|α3|的(de)取值(zhi)區間。
步驟s6:根據步驟s4中所得(de)的開(kai)(kai)關(guan)函(han)數作為svpwm的輸入,控制sapf各相橋臂上的開(kai)(kai)關(guan)的開(kai)(kai)通(tong)和關(guan)斷(duan);
步驟s7:根據(ju)電(dian)荷平衡(heng)(heng)原理,引(yin)入(ru)調節因子f,調節svpwm調制算法中的正負小(xiao)矢量的作用時間(jian),維(wei)持直流側電(dian)壓(ya)的平衡(heng)(heng)。其中,
ts為采樣周期。
如圖3所(suo)示三(san)相四線制(zhi)(zhi)npc型三(san)電(dian)平sapf的控制(zhi)(zhi)框圖,通(tong)過(guo)基于lyapunov函數(shu)的非(fei)線性(xing)控制(zhi)(zhi)內環,使被(bei)控量補償電(dian)流(liu)完全解耦,能(neng)夠(gou)改善系(xi)統的動靜態特性(xing);通(tong)過(guo)比例積分pi的外環電(dian)壓控制(zhi)(zhi),能(neng)有(you)效(xiao)的使直流(liu)側(ce)總電(dian)壓維持在設定(ding)值;通(tong)過(guo)引入(ru)與δv有(you)關(guan)的(δv=vdc1-vdc2)調(diao)節因子(zi)f使直流(liu)側(ce)電(dian)壓保持平衡。
本(ben)發明實(shi)施例(li)的方法通過三相四線(xian)制(zhi)npc型(xing)三電(dian)平sapf系統,基于matlab/simulink搭建仿(fang)(fang)真模(mo)型(xing)進(jin)行了(le)仿(fang)(fang)真對比實(shi)驗(yan)(yan)(yan)且在實(shi)驗(yan)(yan)(yan)樣機上進(jin)行了(le)實(shi)驗(yan)(yan)(yan)驗(yan)(yan)(yan)證。三相電(dian)源(yuan)和三相四線(xian)制(zhi)npc型(xing)三電(dian)平sapf仿(fang)(fang)真主要參(can)數設置如(ru)下:
三相電源為220v/50hz;電網的阻抗rs=0.2ω、感抗ls=0.5mh;負載的阻抗rl=30ω、感抗ll=10mh;sapf輸出側的濾波電感lf=4mh、濾波電阻rf=0.4ω,直流側電容cf=5.5mf,直流側的總電壓的期望值v*=800v;lyapunov函數的(de)控(kong)制增(zeng)益α1=α2=α3=-1.5e-4;本文提出的(de)方(fang)法下,電(dian)壓外環kp=0.17、ki=0.02;傳(chuan)統(tong)pi控(kong)制方(fang)法下,電(dian)流內環kp=0.17、ki=0.02,電(dian)壓外環kp=0.2、ki=0.5,仿真時(shi)(shi)間(jian)0~0.42s。電(dian)網平(ping)(ping)衡(heng)時(shi)(shi),0.2s時(shi)(shi),接入另一相(xiang)(xiang)同的(de)負(fu)荷;0.3s時(shi)(shi)斷開該負(fu)荷。三相(xiang)(xiang)電(dian)壓幅(fu)值不(bu)平(ping)(ping)衡(heng)時(shi)(shi),三相(xiang)(xiang)電(dian)源電(dian)壓的(de)有效值分(fen)(fen)別(bie)為220v、150v、192v。三相(xiang)(xiang)電(dian)壓相(xiang)(xiang)角不(bu)平(ping)(ping)衡(heng)時(shi)(shi),三相(xiang)(xiang)電(dian)源電(dian)壓的(de)有效值均(jun)為220v,但a、b、c三相(xiang)(xiang)的(de)相(xiang)(xiang)角分(fen)(fen)別(bie)為0°、-90°、60°。
npc型(xing)三(san)電(dian)平三(san)相四線(xian)制(zhi)sapf實驗主要參數設置如(ru)下:npc型(xing)三(san)電(dian)平sapf采(cai)(cai)用(yong)型(xing)號(hao)為12個ikw30n60t的絕緣(yuan)柵雙極(ji)晶體管和6個型(xing)號(hao)為vs-30epf12的二極(ji)管,控制(zhi)芯(xin)片采(cai)(cai)用(yong)dsptms320f28335。其余參數與仿真一(yi)致。
具體仿真效果為:
1)電(dian)網平衡時,圖4a為(wei)(wei)補償(chang)(chang)前三(san)相電(dian)源(yuan)電(dian)流(liu)波(bo)(bo)形圖;可(ke)見,未補償(chang)(chang)時(t=0~0.2s),a、b、c各相非線性(xing)負(fu)(fu)載(zai)(zai)電(dian)流(liu)非正弦且(qie)諧波(bo)(bo)含(han)量(liang)較大(da)(da)(da),總(zong)諧波(bo)(bo)失(shi)真(totalharmonicdistortion,thd)分(fen)別為(wei)(wei)22.46%、22.58%、22.29%;圖4b為(wei)(wei)采用本發(fa)明提(ti)出(chu)的基于lyapunov函(han)數的非線性(xing)控制方(fang)法下(xia),補償(chang)(chang)后三(san)相電(dian)源(yuan)電(dian)流(liu)波(bo)(bo)形圖;可(ke)見,經(jing)sapf補償(chang)(chang)后(t=0~0.2s),電(dian)源(yuan)電(dian)流(liu)正弦化(hua),諧波(bo)(bo)含(han)量(liang)大(da)(da)(da)大(da)(da)(da)降(jiang)低,thd分(fen)別下(xia)降(jiang)至(zhi)2.47%、2.46%、2.52%,在(zai)(zai)t=0.2s加載(zai)(zai)時,負(fu)(fu)載(zai)(zai)電(dian)流(liu)突(tu)增一(yi)倍,約需0.03s達到新(xin)的穩態;在(zai)(zai)t=0.3s卸載(zai)(zai)后,也能(neng)快速達到新(xin)的穩態,驗(yan)證了該系統(tong)具有良好的動靜態特性(xing);由圖4c可(ke)見,經(jing)電(dian)壓外環控制后,直流(liu)側的總(zong)電(dian)壓能(neng)維持(chi)在(zai)(zai)800v,且(qie)紋(wen)波(bo)(bo)較小;上、下(xia)電(dian)容兩端(duan)電(dian)壓差(cha)也能(neng)近似為(wei)(wei)0。
2)電(dian)(dian)(dian)網(wang)(wang)不(bu)平(ping)(ping)衡時,分(fen)別(bie)對三相(xiang)(xiang)電(dian)(dian)(dian)網(wang)(wang)電(dian)(dian)(dian)壓(ya)幅值不(bu)平(ping)(ping)衡、相(xiang)(xiang)角不(bu)平(ping)(ping)衡時進行仿(fang)真(zhen)(zhen)。圖(tu)5a、5b、5c是三相(xiang)(xiang)電(dian)(dian)(dian)網(wang)(wang)電(dian)(dian)(dian)壓(ya)幅值不(bu)平(ping)(ping)衡時sapf補償前的(de)仿(fang)真(zhen)(zhen)圖(tu);對比圖(tu)6a、6b、6c、6d、6e與(yu)7a、7b、7c、7d可見,本發(fa)明(ming)控(kong)(kong)制(zhi)方法下與(yu)傳(chuan)統pi控(kong)(kong)制(zhi)方法相(xiang)(xiang)比,三相(xiang)(xiang)四線(xian)制(zhi)npc型三電(dian)(dian)(dian)平(ping)(ping)sapf經本發(fa)明(ming)所(suo)提(ti)出(chu)的(de)基于lyapunov函數的(de)非線(xian)性控(kong)(kong)制(zhi)方法后(hou),補償效(xiao)果(guo)更(geng)好(hao),諧波含量更(geng)低、響應速(su)度更(geng)快。圖(tu)8a、8b、8c、8d為三相(xiang)(xiang)相(xiang)(xiang)角不(bu)平(ping)(ping)衡時仿(fang)真(zhen)(zhen)結(jie)果(guo)圖(tu);由圖(tu)6a、6b、6c、6d、6e與(yu)8a、8b、8c、8d可見,當(dang)電(dian)(dian)(dian)網(wang)(wang)不(bu)平(ping)(ping)衡時,本發(fa)明(ming)所(suo)提(ti)出(chu)的(de)控(kong)(kong)制(zhi)方法應用于三相(xiang)(xiang)四線(xian)制(zhi)npc型三電(dian)(dian)(dian)平(ping)(ping)sapf是有效(xiao)的(de)。
具體實驗效果為:
圖(tu)(tu)(tu)(tu)(tu)9、圖(tu)(tu)(tu)(tu)(tu)10和(he)(he)圖(tu)(tu)(tu)(tu)(tu)11為(wei)(wei)實(shi)(shi)(shi)(shi)(shi)驗(yan)結(jie)(jie)果(guo)(guo)(guo)圖(tu)(tu)(tu)(tu)(tu)。圖(tu)(tu)(tu)(tu)(tu)9是三(san)(san)相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)網平(ping)衡時實(shi)(shi)(shi)(shi)(shi)驗(yan)結(jie)(jie)果(guo)(guo)(guo)圖(tu)(tu)(tu)(tu)(tu);其(qi)中(zhong):(a)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)源電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu);(b)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)負(fu)載電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu);(c)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)補(bu)償電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu);(d)為(wei)(wei)上(shang)、下(xia)直流(liu)(liu)(liu)(liu)側電(dian)(dian)(dian)(dian)容電(dian)(dian)(dian)(dian)壓(ya)(ya)。圖(tu)(tu)(tu)(tu)(tu)10是三(san)(san)相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)壓(ya)(ya)幅(fu)值不(bu)平(ping)衡時的(de)實(shi)(shi)(shi)(shi)(shi)驗(yan)結(jie)(jie)果(guo)(guo)(guo)圖(tu)(tu)(tu)(tu)(tu);其(qi)中(zhong):(a)為(wei)(wei)三(san)(san)相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)網電(dian)(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(b)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)負(fu)載電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(c)為(wei)(wei)本發明方(fang)法下(xia)a相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)源電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(d)為(wei)(wei)傳統pi控(kong)制(zhi)(zhi)方(fang)法下(xia)sapf側a相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu)。圖(tu)(tu)(tu)(tu)(tu)11是三(san)(san)相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)壓(ya)(ya)相(xiang)(xiang)(xiang)(xiang)(xiang)角(jiao)不(bu)平(ping)衡時的(de)實(shi)(shi)(shi)(shi)(shi)驗(yan)結(jie)(jie)果(guo)(guo)(guo)圖(tu)(tu)(tu)(tu)(tu)。其(qi)中(zhong):(a)為(wei)(wei)三(san)(san)相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)網電(dian)(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(b)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)負(fu)載電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(c)為(wei)(wei)a相(xiang)(xiang)(xiang)(xiang)(xiang)電(dian)(dian)(dian)(dian)源電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu);(d)為(wei)(wei)sapf側線電(dian)(dian)(dian)(dian)壓(ya)(ya)實(shi)(shi)(shi)(shi)(shi)驗(yan)波(bo)形(xing)(xing)(xing)(xing)圖(tu)(tu)(tu)(tu)(tu)。由(you)圖(tu)(tu)(tu)(tu)(tu)可(ke)見非線性無源控(kong)制(zhi)(zhi)能達到理想(xiang)的(de)控(kong)制(zhi)(zhi)效(xiao)果(guo)(guo)(guo),實(shi)(shi)(shi)(shi)(shi)現電(dian)(dian)(dian)(dian)網電(dian)(dian)(dian)(dian)流(liu)(liu)(liu)(liu)正弦化和(he)(he)功率因素單位化。