中文字幕无码日韩视频无码三区

空間坐標監測的識別受損索松弛索支座角位移的方法

文檔序號(hao):6133768閱讀:243來源:國(guo)知局
專利名稱:空間坐標監測的識別受損索松弛索支座角位移的方法
技術領域
斜拉橋、懸索橋、桁架結構等結構有一個共同點,就是它們有許多承受拉伸載荷的部件,如斜拉索、主纜、吊索、拉桿等等,該類結構的共同點是以索、纜或僅承受拉伸載荷的桿件為支承部件,為方便起見本發明將該類結構表述為“索結構”。在索結構的服役過程中, 索結構的支承系統(指所有承載索、及所有起支承作用的僅承受拉伸載荷的桿件,為方便起見,本專利將該類結構的全部支承部件統一稱為“索系統”,但實際上索系統不僅僅指支承索,也包括僅承受拉伸載荷的桿件)會受損,同時索結構的支座也可能出現角位移(例如支座繞坐標軸x、Y、z的轉動,實際上就是支座繞坐標軸Χ、Υ、Ζ的角位移),這些變化對索結構的安全是一種威脅,本發明基于結構健康監測技術,基于空間坐標監測來識別支座角位移、 識別索結構的索系統中的受損索、識別需調整索力的支承索,并給出具體的索長調整量,屬工程結構健康監測領域。
背景技術
支座角位移對索結構安全是一項重大威脅,同樣的,索系統的損傷和松弛也將對結構的安全造成不良影響,嚴重時將會引起結構的失效,因此準確及時地識別支座角位移、 受損索和松弛索(即需調整索力的支承索)是非常必要的。索結構出現支座角位移、受損索和松弛索后會引起結構的可測量參數的變化,例如會影響索結構的形狀或空間坐標,實際上結構空間坐標的變化包含了索結構的健康狀態信息,也就是說可以利用結構空間坐標數據判斷結構的健康狀態,可以基于空間坐標監測 (本發明將被監測的空間坐標稱為“被監測量”,后面提到“被監測量”就是指被監測的空間坐標)來識別支座角位移、受損索和松弛索。

發明內容
技術問題本發明公開了一種基于空間坐標監測的、能夠合理有效地識別支座角位移、受損索和松弛索的健康監測方法。依據支承索的索力變化的原因,可將支承索的索力變化分為三種情況一是支承索受到了損傷,例如支承索出現了局部裂紋和銹蝕等等;二是支承索并無損傷,但索力也發生了變化,出現這種變化的主要原因之一是支承索自由狀態(此時索張力也稱索力為0)下的索長度(稱為自由長度,本發明專指支承索兩支承端點間的那段索的自由長度)發生了變化;三是支承索并無損傷,但索結構支座有了角位移,也會引起結構內力的變化,當然也就會引起索力的變化。為了方便,本發明將自由長度發生變化的支承索統稱為松弛索。技術方案本發明由兩大部分組成。分別是一、建立用于識別支座角位移、受損索和松弛索的健康監測系統所需的知識庫和參量的方法、基于知識庫(含參量)、基于被監測量等量的監測的、識別索結構的支座角位移、受損索和松弛索的方法。二、健康監測系統的軟件和硬件部分。設索的數量和支座角位移分量的數量之和為#。為敘述方便起見,本發明統一稱被評估的索和支座角位移為“被評估對象”,給被評估對象連續編號,本發明用用變量i表示這一編號,i=l, 2,3,…,N,因此可以說有#個被評估對象。本發明的第一部分建立用于識別索結構支座角位移、受損索和松弛索的健康監測系統所需的知識庫和參量的方法、基于知識庫(含參量)、基于實測索結構支座角位移的、 基于被監測量等量的監測的、識別索結構的支座角位移、受損索和松弛索的方法。可按如下方法進行,以獲得更準確的索結構的健康狀態評估。第一步首先建立索結構初始健康狀態向量式、建立索結構的初始力學計算基準模型A。(例如有限元基準模型,在本發明中A。是不變的)。索結構“初始健康狀態向量記為d。” (如式(1)所示),用d0表示索結構(用索結構的初始力學計算基準模型A。表示)的健康狀態。dg=[dBl《,···‘··· d^J(1)
式(1)中式//=1,2,3,…….,N)表示A。中的索結構的第i個被評估對象的初始健康狀態,如果該被評估對象是索系統中的一根索(或拉桿),那么doi表示其初始損傷,doi 為0時表示無損傷,為100%時表示該索徹底喪失承載能力,介于0與100%之間時表示喪失相應比例的承載能力,如果經無損檢測查明該索沒有損傷,那么doi表示該索與式,.損傷值力學等效的松弛,具體松弛量的計算方法在后面說明;如果該被評估對象是一個支座的一個角位移分量,那么it.表示其初始角位移數值。式(1)中Γ表示向量的轉置(后同)。建立索結構初始健康狀態向量(依據式(1)記為式)時,利用索結構完工之時或健康監測系統開始工作之時的索結構的支座角位移的實測數據和設計圖、竣工圖確定索結構初始健康狀態向量式的對應于支座角位移的各元素數值;利用索的無損檢測數據等能夠表達索的健康狀態的數據確定索結構初始健康狀態向量式的對應于索的各元素數值;如果沒有索的無損檢測數據及其他能夠表達索的健康狀態的數據時,或者可以認為結構初始狀態為無損傷無松弛狀態時,向量d0的對應于索的各元素數值取0。建立索結構的力學計算基準模型A0 (例如有限元基準模型)的方法如下
建立A0時,根據索結構完工之時的索結構的實測數據(包括索結構形狀數據、索力數據、拉桿拉力數據、索結構支座坐標數據、索結構支座角坐標數據、索結構模態數據等實測數據,對斜拉橋、懸索橋而言是橋的橋型數據、索力數據、橋的模態數據、索的無損檢測數據等能夠表達索的健康狀態的數據)和設計圖、竣工圖,利用力學方法(例如有限元法)建立 Α。;如果沒有索結構完工之時的結構的實測數據,那么就在建立健康監測系統前對結構進行實測,得到索結構的實測數據(包括索結構形狀數據、索力數據、拉桿拉力數據、索結構支座坐標數據、索結構支座角坐標數據、索結構模態數據等實測數據,對斜拉橋、懸索橋而言是橋的橋型數據、索力數據、橋的模態數據、索的無損檢測數據等能夠表達索的健康狀態的數據),根據此數據和索結構的設計圖、竣工圖,利用力學方法(例如有限元法)建立Α。。不論用何種方法獲得Α。,基于A0計算得到的索結構計算數據(對斜拉橋、懸索橋而言是橋的橋型數據、索力數據、橋的模態數據)必須非常接近其實測數據,誤差一般不得大于5%。這樣可保證利用A0計算所得的模擬情況下的應變計算數據、索力計算數據、索結構形狀計算數據和位移計算數據、索結構角度數據等,可靠地接近所模擬情況真實發生時的實測數據。“結構的全部被監測的空間坐標數據”由結構上f個指定點的、及每個指定點的Z個指定方向的空間坐標來描述,結構空間坐標數據的變化就是^個指定點的所有空間坐標分量的變化。每次共有#個空間坐標測量值或計算值來表征結構空間坐標信息。
f和I不得小于#。為方便起見,在本發明中將“結構的被監測的空間坐標數據”簡稱為“被監測量”。 在后面提到“被監測量的某某矩陣或某某向量”時,也可讀成“空間坐標的某某矩陣或某某
向量”。本發明中用被監測量初始向量C;表示索結構的所有被監測量的初始值組成的向量(見式(2))。要求在獲得A。的同時獲得C;。因在前述條件下,基于索結構的計算基準模型計算所得的被監測量可靠地接近于初始被監測量的實測數據,在后面的敘述中,將用同一符號來表示該計算值和實測值。Ce =[Col Co2 * · · Cw * · · Ctdt J(2)
式(2)中6^.(/=1, 2,3,…….,M; M^JV)是索結構中第J個被監測量的初始量, 該分量依據編號規則對應于特定的第J·個被監測量。r表示向量的轉置(后同)。本發明中用被監測量當前數值向量C是由索結構中所有被監測量的當前值組成的向量(定義見式(3))。C = [q C2 ··· Cj ·· ·(3)
式(3)中 .(/=1,2,3,……Μ; M減是索結構中第J個被監測量的當前值, 該分量Cj依據編號規則與Coj對應于同一 “被監測量”。第二步建立索結構被監測量單位變化矩陣」C的方法。在索結構的力學計算基準模型Α。的基礎上進行若干次計算,計算次數數值上等于#。每一次計算假設只有一個被評估對象在原健康狀態(用索結構初始健康狀態向量i/ ^ 表示)的基礎上再增加有單位損傷或單位角位移(本發明稱為健康狀態有單位變化,或簡稱有單位變化),具體的,如果該被評估對象是索系統中的一根支承索,那么就假設該支承索增加單位損傷(例如取5%、10%、20%或30%等損傷為單位損傷),如果該被評估對象是一個支座的一個方向的角位移分量,就假設該支座在該角位移方向增加發生單位角位移(例如取十萬分之一弧度、十萬分之二弧度、十萬分之三弧度等為單位角位移),用化,.記錄這一單位損傷或單位角位移,其中i表示假設增加發生單位損傷或單位角位移的被評估對象的編號。用“單位損傷或單位角位移向量久”(如式(4)所示)記錄所有的單位損傷或單位角位移。每一次計算中出現單位損傷或單位角位移的被評估對象不同于其它次計算中出現單位損傷或單位角位移的被評估對象,每一次計算都利用力學方法(例如有限元法)計算索結構的所有被監測量的當前計算值,每一次計算得到的所有被監測量的當前計算值組成一個被監測量計算當前向量(當假設第i個被監測量有單位損傷或單位角位移時,可用式(5)表示被監測量計算當前向量C/);每一次計算得到被監測量計算當前向量減去被監測量初始向量后再除以該次計算所假設的單位損傷或單位角位移數值,所得向量就是此條件下(以有單位損傷或單位角位移的被評估對象的編號為標記)的被監測量變化向量(當第i個被評估對象有單位損傷或單位角位移時,用々G表示被監測量變化向量,定義見式(6),式(6)為式(5)減去式(2)所得),被監測量變化向量的每一元素表示由于計算時假定有單位損傷或單位角位移的那個被評估對象的單位變化而引起的該元素所對應的被監測量的改變量;有N個被評估對象就有#個被監測量變化向量,由于有I個被監測量,所以每個被監測量變化向量有I個元素,由這#個被監測量變化向量依次組成有個元素的被監測量單位變化矩陣」C,的定義如式(7)所示。
權利要求
1. 一種空間坐標監測的識別受損索松弛索支座角位移的方法,其特征在于所述方法包括a.為敘述方便起見,統一稱被評估的支承索和支座角位移分量為被評估對象,設被評估的支承索的數量和支座角位移分量的數量之和為見即被評估對象的數量為# ;確定被評估對象的編號規則,按此規則將索結構中所有的被評估對象編號,該編號在后續步驟中將用于生成向量和矩陣;用變量i表示這一編號,i=l, 2,3,…,N-,b.確定指定的將被監測空間坐標的被測量點,給所有指定點編號;確定過每一測量點的將被監測的空間坐標分量,給所有被測量空間坐標分量編號;上述編號在后續步驟中將用于生成向量和矩陣;“結構的全部被監測的空間坐標數據”由上述所有被測量空間坐標分量組成;為方便起見,將“結構的被監測的空間坐標數據”稱為“被監測量”;測量點的數量不得小于索的數量;所有被測量空間坐標分量的數量之和不得小于c.利用索的無損檢測數據等能夠表達索的健康狀態的數據建立初始健康狀態向量 d0O如果沒有索的無損檢測數據及其他能夠表達索的健康狀態的數據時,向量式的各元素數值取0。d.在建立初始健康狀態向量式的同時,直接測量計算得到索結構的所有被監測量的初始數值,組成被監測量的初始數值向量G ;e.在建立初始健康狀態向量之和被監測量的初始數值向量C;的同時,直接測量計算得到所有支承索的初始索力,組成初始索力向量^ ;同時,依據結構設計數據、竣工數據得到所有支承索的初始自由長度,組成初始自由長度向量人;同時,依據結構設計數據、竣工數據或實測得到索結構的初始幾何數據;同時,實測或根據結構設計、竣工資料得到所有索的彈性模量、密度、初始橫截面面積;f.根據索結構的設計圖、竣工圖和索結構的實測數據、索的無損檢測數據和初始索結構支座坐標數據建立索結構的力學計算基準模型A。;g.在力學計算基準模型A。的基礎上進行若干次力學計算,通過計算獲得索結構被監測量單位變化矩陣」C;h.實測得到索結構的所有支承索的當前索力,組成當前索力向量廠;同時,實測得到索結構的所有指定被監測量的當前實測數值,組成“被監測量的當前數值向量廣’;實測計算得到所有支承索的兩個支承端點的空間坐標,兩個支承端點的空間坐標在水平方向分量的差就是兩個支承端點水平距離;i.定義待求的被評估對象當前健康狀態向量之和當前實際健康狀態向量J;向量式、 dc和d的元素個數等于被評估對象的數量,式、之和d的元素和被評估對象之間是一一對應關系,d0、dc和d的元素數值代表對應被評估對象的損傷程度或角位移、或與松弛程度力學等效的損傷程度;j.依據“被監測量的當前數值向量^同“被監測量的初始數值向量C;”、“索結構被監測量單位變化矩陣」C,,和“被評估對象當前健康狀態向量之”間存在的近似線性關系,該近似線性關系可表達為式1,式1中除之外的其它量均為已知,求解式1就可以算出被評估對象當前健康狀態向量之;C =C0+AC *dc式 1k.利用式2表達的當前實際健康狀態向量i/的元素< 同初始健康狀態向量式的元素和被評估對象當前健康狀態向量之的元素間的關系,計算得到當前實際健康狀態向量J的所有元素;
2.根據權利要求1所述的空間坐標監測的識別受損索松弛索支座角位移的方法,其特征在于在步驟g中,在力學計算基準模型A。的基礎上進行若干次力學計算,通過計算獲得索結構被監測量單位變化矩陣」C的具體方法為gl.在索結構的力學計算基準模型A。的基礎上進行若干次力學計算,計算次數數值上等于每一次計算假設只有一個被評估對象在原健康狀態的基礎上再增加有單位損傷或單位角位移,為敘述方便,合稱單位損傷和單位角位移為單位變化;具體的,如果該被評估對象是索系統中的一根支承索,那么就假設該支承索在原有健康狀態的基礎上再增加單位損傷,如果該被評估對象是一個支座的一個方向的角位移分量,就假設該支座在該角位移方向在原有健康狀態的基礎上再增加發生單位角位移,用久,.記錄這一單位損傷或單位角位移,其中i表示發生單位損傷或單位角位移的被評估對象的編號;每一次計算中出現單位角位移的被評估對象不同于其它次計算中出現單位損傷或單位角位移的被評估對象,每一次計算都利用力學方法計算索結構的所有被監測量的當前計算值,每一次計算得到的所有被監測量的當前計算值組成一個被監測量計算當前向量;g2.每一次計算得到的被監測量計算當前向量減去被監測量初始向量后再除以該次計算所假設的單位損傷或單位角位移數值,得到一個被監測量變化向量,有#個被評估對象就有#個被監測量變化向量;g3.由這#個被監測量變化向量依次組成有#列的索結構被監測量單位變化矩陣」C ; 索結構被監測量單位變化矩陣」C的每一列對應于一個被監測量變化向量。全文摘要
空間坐標監測的識別受損索松弛索支座角位移的方法,該方法基于空間坐標監測,根據索結構的設計圖、竣工圖和索結構的實測數據等建立索結構的力學計算基準模型,在力學計算基準模型的基礎上進行若干次力學計算,通過計算獲得索結構被監測量單位變化矩陣。依據被監測量的當前數值向量同被監測量初始向量、索結構被監測量單位變化矩陣和待求的被評估對象當前健康狀態向量間存在的近似線性關系,可以識別出索結構的健康狀態的變化,即識別出支座角位移、受損索和松弛索。
文檔編號G01M99/00GK102288439SQ20111012274
公開日2011年12月21日 申請日期2011年5月13日 優先權日2011年5月13日
發明者關慶港, 韓玉林 申請人:東南大學
網友詢(xun)問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會獲得點贊!
1